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Drying processes of polymer solutions on a solid substrate are studied, based on the two-fluid model for
polymer solutions or gels. A simplified model which can describe a skin formation process is proposed to
examine the diffusion process of polymers and the evaporation process of solvent. The authors show that when
a skin �gel phase� is formed, the collective diffusion coefficient is greatly enhanced whereas the evaporation of
solvent is considerably reduced. These two results originate from the bulk elasticity of polymer gels.
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Drying of polymer solutions or colloid dispersions is a
nonequilibrium phenomenon that provides interesting prob-
lems such as coffee stain problems �1,2�, pattern formation
�3–5�, skin formation �gelation near free surfaces of polymer
solutions�, and buckling instabilities �6–8�. In addition to
these fundamental interests, it is a rather practical but impor-
tant issue to know how to control the drying processes in
various industrial applications, for example, manufacturing
polymer films �10–12�, inkjet printing �9�, and so on. In or-
der to establish a basis of these technologies, we must un-
derstand the underlying physics in the drying phenomena.

Extensive studies �13–19� have been devoted to under-
standing the drying processes of polymer solutions on a solid
substrate. One of the main concerns in these studies is time
evolution of the free surface at which the solvent evaporates
accompanied by flow of the solution. The flow field is often
solved via the lubrication approximation �20� on the assump-
tion that the concentration of polymers is uniform or the
variation of concentration is allowed only in the lateral di-
rection. Not so much attention have been paid to the diffu-
sion of polymers in the vertical direction �normal to the free
surface�. Bornside et al. �10� have taken into account the
diffusion process in their model of spin coating and predicted
numerically the formation of a solid “skin” at the free sur-
face. De Gennes �12� have discussed the concentration pro-
files and the skin �crust� formation, and estimated the life-
time of the skin, theoretically. These studies show that the
diffusion process plays an important role in the whole pro-
cesses of the drying, especially, in the process of skin forma-
tion. However, they are not appropriate to describe the whole
process of drying including the skin formation in a single
model system.

Recently, we have proposed a simple model which de-
scribes the diffusion in the skin formation process and ob-
tained a criterion for the skin to be formed �19�. This model
gives an essence of the drying process in heuristic manner
but includes some ad hoc assumptions. A crucial point in this
model is that the collective diffusion coefficient in the skin is
quite large so that the concentration of polymers is almost
constant in that region. However, this assumption seems to
contradict our intuition that the dynamics slows down when
a skin is formed. Indeed, some experiments �6,7,21� imply
that the evaporation rate of solvent greatly reduced after a
skin forms.

In this paper we point out that these two things, namely,
the increase of the diffusion coefficient and the decrease of

the evaporation rate are not inconsistent with each other but
a result of an elastic effect due to the great increase of the
bulk osmotic modulus in a skin. In the following, we con-
struct a model from a unified point of view in which the
elastic effect is taken into account and demonstrate that the
collective diffusion coefficient greatly increases in a skin and
the evaporation rate of solvent dramatically decreases as a
result of the elastic effect.

Here we consider an isothermal system of a polymer so-
lution extended on a solid substrate whose normal lies on the
z axis �Fig. 1�. In a drying process, we assume that only the
solvent evaporates at the free surfaces z=h�t� and the volume
fraction � of polymers near the free surface increases in time
t. When � at z=h reaches a certain value, �g, a thin gellike
layer, called a skin, is formed near the free surface.

The above dynamical processes can be described by the
two-fluid model �22,23� for polymer solutions or gels with
appropriate boundary conditions discussed later. One of the
key concepts in the two-fluid model is the stress-diffusion
coupling which is expressed as, in the absence of mean flow,
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�t
= � · ��2�1 − ��2

�
��
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��
−

� · �

�
�� , �1�

where � is the friction coefficient between polymers and sol-
vent and, in general, depends on �. We, however, regard it as
a constant throughout in this paper, for simplicity. Fm in Eq.
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FIG. 1. Geometry and coordinates of our model system. A poly-
mer solution is spread on a solid substrate and the solvent evapo-
rates from the free surface at z=h. The system is homogeneous in x
and y directions.
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�1� is the mixing free energy of the polymer solution which
is usually given by the functional form as

Fm =	 dr�C

2
����2 + f���� �2�

with a constant C and the free energy density f��� of the
Flory-Huggins type. In the limit of large polymerization in-
dex, f��� is given by

f��� =
kBT

v1
��1 − ��ln�1 − �� + ���1 − ��� , �3�

where T is the temperature, kB the Boltzmann constant, v1
the volume of a monomer, and � the Flory-Huggins interac-
tion parameter. Hereafter we neglect the gradient term in Eq.
�2�, provided that neither phase separation nor volume-phase
transition occur. In a system of high volume fraction ���,
especially in a gel, the elastic free energy due to polymer
networks enters the total free energy and affects the dynam-
ics of �, since fluctuations of � inevitably involves deforma-
tion of the polymer networks. This gives rise to the elastic
stress term in the dynamical equation of �. The last term in
Eq. �1� shows the dynamical coupling between the elastic
stress and the diffusion, that is, the stress � due to the poly-
mer networks yields the diffusion flux of �. It should be
emphasized that the “diffusion” here expresses a collective
motion of polymer networks and does not mean the self-
diffusion of a single molecule.

Now we assume that all quantities are homogeneous in x
and y directions. In this case, Eq. �1� can be recast into a
one-dimensional diffusion equation given as

��

�t
=

�

�z
�A���

��

�z
� , �4�

with the collective diffusion coefficient

A��� =
�2�1 − ��2

�
� f���� +

����
�2 � , �5�

where f����
d2f��� /d�2, ����
−���zz /�� is the elastic
contribution of the bulk osmotic modulus. Since in the gel
phase ����g� a permanent elasticity appears whereas in the
solution ��	�g� the elastic stress rapidly relaxes in the time
scale of observation, we may use an approximate expression
�24� for the bulk modulus as

���� = Kg
�� − �g� , �6�

where Kg�0 is the bulk osmotic modulus in the gel which is
quite large compared with that in the solution and 
�x�=0
�for x	0� or 1 �otherwise� is the step function. Here we
should note that the collective diffusion coefficient A��� is
enhanced in the gel phase due to the elastic effect.

Next consider the evaporation process of the solvent. We
assume that there is a fixed diffusion layer near the free
surface in the gas phase so that the evaporation process is
controlled by the diffusion of the solvent molecules in the
diffusion layer. Furthermore, we assume a local equilibrium
at the free surface, that is, the chemical potential of the sol-
vent molecules is continuous: �s=�v at z=h, where �s and

�v are the chemical potentials of the solvent molecules in the
solution and gas phases, respectively. The chemical potential
of the gas phase can be written as

�v = kBT ln
p

p*
, �7�

where p is the partial pressure of solvent molecules in the
gas phase and p* the saturated vapor pressure of pure sol-
vent. The chemical potential of the solvent in the solution or
gel phase is related to the osmotic pressure � via the relation
�s=−v1�. Using Eqs. �3� and �6�, we obtain �24�

�s = kBT�ln�1 − �� + � + ��2� − v1����ln��/�g� . �8�

From Eqs. �7� and �8� and introducing a number density of
the solvent molecules 

 pv1 / �kBT�, we obtain the local
equilibrium condition ��v=�s� as a relation between � and

 at the interface �z=h�,


/
* = �1 − ��exp�� + ��2 − �̂���ln��/�g�� , �9�

where �̂���
v1���� / �kBT�. In Eq. �9� 
 and � should be
evaluated at just above �z=h+0� and below �z=h−0� the
interface, respectively. In Fig. 2 we plot 
 /
* as a function
of � for �=0, Kg=10, and �g=0.5. We find that the 
 /
* is
extensively reduced in ���g, which is consistent with a
recent experiment �21�. This is due to the elastic effect in the
gel phase. The above argument have been made by Leibler
and Sekimoto �24� on the sorption of gases and liquids in
glassy polymers.

Based on the above consideration, we now construct a
model system of the drying process as follows. The total
system with size L is composed of two regions. One is the
liquid region �0	z	h� where the polymer solutions or gels
exist and the polymer volume fraction � obeys Eq. �4�. The
other is the gas region �h	z	L� where the diffusion of
vapor of the solution takes place in the air and the number
density 
 of the solvent molecules follows the simple diffu-
sion equation
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FIG. 2. Relative number density of solvent molecules 
 /
* just
above the free surface �z=h+0� is plotted as a function of the vol-
ume fraction of polymers � just below the free surface �z=h−0� for

�=0, K̂g=10, and �g=0.5.
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�


�t
= Da

�2


�z2 �10�

with a diffusion constant Da.
The boundary conditions for Eqs. �4� and �10� are given

as follows. On the substrate �z=0� we impose no flux condi-
tion:

��

�z
= 0 at z = 0. �11�

At z=L the system is in contact with a kind of reserver with
a constant number density 
� of the solvent molecules


 = 
� at z = L . �12�

Hence there is a finite flux JL
−Da��
 /�z�z=L in the drying
process.

Boundary conditions at the interface and equation of mo-
tion of h=h�t� can be derived from the conservation laws of
polymers and solvent which are expressed as

d

dt
	

0

h

dz��z,t� = 0, �13�

d

dt
	

0

L

dz
�z,t� = − JL. �14�

From these equations and the incompressibility condition �
+v1
=1 in 0	z	h, we obtain

ḣ = −
A���

�

��

�z
at z = h − 0, �15�

=
v1Da

1 − v1


�


�z
at z = h + 0. �16�

In addition to these conditions we must impose the local
equilibrium condition Eq. �9� so that we have a closed set of
equations.

In a particular case that the diffusion process of 
 can be
regarded as a steady state, Eq. �10� is readily solved. Then
we obtain from Eq. �16�

ḣ �
v1Da

L
�
� − 
�h + 0,t�� . �17�

Here we have assumed that v1
�1 and h�L. Since 
 in Eq.

�17� is given by Eq. �9�, the evaporation rate defined as �ḣ� is

given as a function of � at the interface. In this case �ḣ� as a
function of � shows the same behavior as 
 /
* in Fig. 2.
This means that the evaporation rate is extensively reduced
by gelation or the skin formation near the free surface. We
should emphasize that the decrease of the evaporation rate
originates from the elastic effect on the bulk osmotic modu-
lus.

Equations �4�–�6�, �9�, and �17�, with the boundary con-
ditions �11�, �12�, and �15�, and �15� form a closed set of
equations. We solve these equations numerically, in the units
of length h0
h�0� and time h0

2 /D with D
kBT / ��v1�, for

given dimensionless parameters Ĵ0
v1
*Dah0 / �DL�, K̂g


v1Kg / �kBT�, and 
� /
*. Note that in these units the rate
equation of h is given as

ḣ = Ĵ0�
�


*
−





*
� . �18�

The following numerical calculations have been done on a
regular one-dimensional lattice via coordinate transformation
z→ ẑ
z /h�t�. Instead of the step function 
�x� in Eq. �6� we
have used �1+tanh�x /��� /2 with �=10−2 to avoid a numeri-
cal instability.

In Fig. 3 we show a time evolution of the profile ��z , t�
for Ĵ0=1, K̂g=10, �=0, �g=0.5, and 
� /
*=0.1. The initial
condition ��z ,0�=�0 with �0=0.2 has been used. In the ini-
tial time regime in which ��h , t�	�g, a polymer-rich region
is formed near the free surface but no skin layer is observed
�regime I�. After ��h , t� reaches �g, a skin layer �hg�z	h
such that �g���z , t�� is formed �regime II�. In the final time
regime the skin layer extends in the whole liquid region �re-
gime III�. The above behavior is qualitatively similar to that
obtained with our previous models �19�.

Next we plot h�t� �thick solid line�, hg�t� �thin solid line�,
and ��h , t� �dashed line� as functions of t in Fig. 4. The
thickness of skin layer h−hg grows linearly in the beginning
of regime II since ��h , t� stays near �g in that regime. After
the skin layer fills the region 0	z	h �regime III�, ��h , t�
grows again and then the slope of h�t�, that is, the evapora-
tion rate extremely decreases. When 
�h+0, t� reaches 
�,
the whole system equilibrates and the drying ceases. This
result implies that the time when the evaporation rate is sig-
nificantly lowered is not the time when the skin begins to
form but the time when the whole liquid region becomes gel
�skin�. This point should be explored by experiments.

The above results are obtained for a one-dimensional sys-
tem such as a uniform layer of polymer solution on a flat
substrate. For two-or three-dimensional systems the results
should be modified depending on the geometry �e.g., a
spherical drop� of the system, which can be seen as follows.
The deformations which cause the stress � in Eq. �1� include
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FIG. 3. Time evolution of the profile ��z , t� obtained by the

numerical simulation for Ĵ0=1, K̂g=10, �=0, �g=0.5, and 
� /
*

=0.1. Plots of ��z , t� at constant time interval are shown simulta-
neously. The left upper curves correspond to the later profiles.
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not only the bulk mode �changing volume� but also the shear
mode, in general. The former deformation mode is directly
connected to the volume fraction �, whereas the latter does
not change �. However, the stress-diffusion coupling allows
the shear deformation to induce a diffusion flux. This means

that Eq. �1� cannot be reduced to a simple form of Eq. �4� in
two-or three-dimensional systems. Hence, we cannot exclude
the possibility that the shear deformation causes reduction of
the diffusion flux which modifies the above numerical re-
sults. In order to examine such effects we must introduce a
new variable describing deformation of polymer networks
and an appropriate constitutive relation between the defor-
mation and the stress. However, this subject is beyond the
scope of this paper, and we will discuss this problem in detail
elsewhere.

In this paper we have constructed a model of drying pro-
cess in polymer solutions based on the two-fluid model in
which the elastic effect due to polymer networks is taken into
consideration. We have pointed out that the increase of the
bulk osmotic modulus due to the gelation causes both the
increase of the collective diffusion coefficient and the de-
crease of the evaporation rate of solvents. We believe that
this result provide a fundamental knowledge to the related
technologies and might be useful for practical applications.
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FIG. 4. Plots of h�t� �solid thick line�, hg�t� �solid thin line�, and
��h , t� �dashed line� as functions of t using the data obtained by the

numerical simulation for Ĵ0=1, K̂g=10, �=0, �g=0.5, and 
� /
*

=0.1.
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